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I.  Introduction
There is compelling empirical [1] and theoretical [2] evidence that the global confinement

of H-mode discharges increases as the pedestal pressure or temperature increases. Therefore,

confidence in the performance of future machines requires an ability to predict the pedestal

conditions in those machines. At this time, both the theoretical and empirical understanding

of transport in the pedestal are incomplete and are inadequate to predict pedestal conditions

in present or future machines.

Recent empirical results might be evidence of a fundamental relation between the electron

temperature Te and electron density ne  profiles in the pedestal. A data set from the ASDEX-

Upgrade tokamak has shown that ηe, the ratio between the scale lengths of the ne  and Te

profiles, exhibits a value of about 2 throughout the pedestal, despite a large range of the

actual density and temperature values [3]. Data from the DIII-D tokamak show that over a

wide range of pedestal density, the width of the steep gradient region for the Te profile is

about 1–2 times the corresponding width for the ne  profile, where both widths are measured

from the plasma edge [4]. Thus, the barrier in the density might form a lower limit for the

barrier in the electron temperature.

As implied above, there is no validated theory for electron thermal transport in the

pedestal. However, significant theoretical work has been done for electron temperature gradi-

ent (ETG) turbulence for conditions appropriate to the core of tokamaks. For example, linear

toroidal gyrokinetic simulations have been performed for a wide range of plasma conditions

and the results have been used to develop an analytic formula for the critical Te gradient at

which ETG turbulence would be expected to turn on [5]. This result is

R LTe crit( )  = max [0.8R/Ln, F(τ,s

∨

,q,ε,dκ/dv)]   , (1)

where R is major radius, L T TTe e e= ∇ , L n nn = ∇ , τ = Z T Teff e i  where Zeff is the effec-

tive ion charge, Ti is the ion temperature, s

∨

 is the magnetic shear, q is safety factor, ε is

inverse aspect ratio and κ  is elongation. The function F is displayed in Ref. [5]. This equa-

tion predicts that ETG turbulence will turn on when the normalized gradient of Te exceeds

the larger of two terms. If the turbulence were sufficiently strong, the Te gradient would not

rise significantly above the critical level. For a sufficiently strong density gradient, it would

be expected that the electron density and temperature profiles would exhibit the relationship

ηe n e
≡ ≈L LT 1.
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For steep edge gradients, the authors of Ref. [5] state that the plasma might deviate sig-

nificantly from the critical condition as expressed in Eq. (1). Specifically, the condition for

the onset of strong turbulence might be substantially different than the condition for linear

stability. Thus, the observed ηe might deviate from unity. With that caveat, the data from

ASDEX-U and from DIII-D show features that are qualitatively consistent with the theory:

ηe being about 2 and ∇Te  being large where ∇ne  is large. These results suggest that it

would be useful to perform further empirical studies of the relation between edge Te and ne

profiles in the H-mode pedestal. The theory embodied in Eq. (1), though not strictly

applicable to the pedestal, is used to pose three questions for study. Is there evidence for a

linear relation between LTe
 and Lne

 at the steepest part of the edge density gradient? If so,

what are the values of ηe? Lastly, does this relation hold over the full extent of the density

pedestal?

II.  Analysis Method and Results
For the analysis presented here, the edge Te and ne profiles have been fit with a modified

hyperbolic tangent function (tanhfit) [6] with the data being obtained from the DIII-D

Thomson scattering system [7]. Long experience shows that this functional form routinely

fits the data to within the measurement errors. Thus, these fits allow for a convenient way to

evaluate the profiles and their gradients at arbitrary locations near the edge.

Figure 1 shows an example of experi-

mental T e and n e profiles from the

H-mode pedestal with the model fits

overlayed. This figure also demonstrates

some terminology that will be used in this

paper. The largest density gradient occurs

at the “symmetry” point of the density

profile, a location which is determined

from the fit. The “knee” of the density

profile is a measure of the location of the

inner edge of the density barrier; in terms

of fitting parameters, this position is a

half-width into the plasma as measured

from the symmetry point. Finally, the

“foot” of the ne profile is the location

that is a half-width away from the plasma

core as measured from the symmetry

point. All physical coordinates in this
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Elevation (m)
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Fig. 1.  Typical profiles of Te and ne  in the
H-mode pedestal. Data shown as function of vertical
position along Thomson chord, measured relative to
midplane of machine. Solid lines are fits from tanhfit
function. Positions of density foot, symmetry point
and knee are shown as vertical lines. Inset shows
Thomson laser chord.

paper are elevation along the Thomson laser chord. If projected to the outboard midplane, the

widths would be compressed by about a factor of two. However, no conversion is done here.
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A search for a relation between

LTe
 and Lne

 is presented in Figs. 2

and 3. Both figures contain data

from the ELM-free phases of five

discharges, which sample a wide

range of DIII-D operating space.

The data are evaluated at the location

of the steepest density gradient

under the hypothesis that that would

be the place where ETG turbulence

would have the best chance of mani-

festing some effects on the relation

between the Te and ne profiles. A

running boxcar average of 50 ms

has been performed for all data in

these figures. Figure 2, a plot of

LTe
versus Lne

, shows evidence of a

linear relationship between LTe
 and

Lne
 for a given discharge. This rela-

tionship is also apparent in Fig. 3, a

plot of ηe n e
≡ L LT  versus ∇Te .

Taken as a whole, these data show

that ηe is in the approximate range

of 1-3 for a range of pedestal condi-

tions in which ∇Te  spans about an

order of magnitude. For a given dis-

charge, ηe is approximately con-

stant during the ELM-free phase,

characterized by the variation of

∇Te .
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Fig. 2.  Plot of LTe
 and Lne

 data, measured at point of
steepest density gradient during ELM-free phases of dis-
charges. Various discharges are differentiated by color and
symbol. Scale lengths are along Thomson laser path.
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Fig. 3.  Plot of ηe and ∇Te, measured at point of
steepest density gradient during ELM-free phases of
discharges. Various discharges are differentiated by color
and symbol. Gradient is along Thomson laser path.

Figure 3 shows that three of thedischarges in the survey had ηe values which were

comparable and close to unity, but two discharges had significantly larger ηe values. The

two discharges with the large ηe values both had very high upper and lower triangularity as

compared to the other three discharges. However, there has not yet been sufficient study to

determine if the differences in ηe values are related to these or other characteristics of the

discharges.

Figure 4 examines the relationship between LTe
 and Lne

 over the region in which there

is a large density gradient. For a VH-mode discharge, profiles of ηe at the plasma edge are

plotted and vertical lines are overlayed at the positions of the density foot and knee.  These

data show that in the region of steep density gradient, ηe is in the range of about 1-3 for this
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discharge. Figure 4 also shows that

inboard of the region of step density

gradient, the ηe values rise

significantly above the values seen in

the pedestal.  This is a region of flat

density gradient, and a relationship

between LTe
 and Lne

 is not expected

from the available theory.

III.  Summary and Conclusion
A survey of LTe

,Lne
 and ηe has

been made in the ELM-free phases of

a variety of DIII-D discharges.  The

LTe
 and Lne

 data evaluated at the

location of steepest density gradient,
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Fig. 4.  Profiles of ηe along Thomson laser at three dif-
ferent times in the ELM-free phase of a VH-mode dis-
charge. Vertical lines show locations of knee and foot of
density profile (lower and higher elevation, respectively).

show evidence of a linear relationship in a given discharge. The ratio of these values is not a

constant; ηe is in the range of 1-3 in the pedestal for the discharges evaluated. These results

are found for other discharges that have been studied. These characteristics could be

evidence that edge transport sets up a relation between the Te and ne profiles. ETG

turbulence is a candidate for a mechanism to set up this relationship. Firmer conclusions on

this point await the development of a theory, valid for the steep gradient region at the plasma

edge, which can explain the range of ηe values that have been observed.
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